On vertex operator algebras and 2d conformal field theory:
As algebras over the holomorphic punctured sphere operad
Yi-Zhi Huang, Geometric interpretation of vertex operator algebras, Proc. Natl. Acad. Sci. USA 88 (1991) pp. 9964-9968 (doi:10.1073/pnas.88.22.9964)
Yi-Zhi Huang, Two-dimensional conformal geometry and vertex operator algebras, Progr. in Math. Birkhauser 1997, gbooks
On the representation categories of (rational) vertex operator algebras as (modular) fusion categories:
Yi-Zhi Huang, Vertex operator algebras, the Verlinde conjecture and modular tensor categories, Proc. Nat. Acad. Sci. 102 (2005) 5352-5356 arXiv:math/0412261, doi:10.1073/pnas.0409901102
Yi-Zhi Huang, Rigidity and modularity of vertex tensor categories, Communications in Contemporary Mathematics 10 supp01 (2008) 871-911 arXiv:math/0502533, doi:10.1142/S0219199708003083
Yi-Zhi Huang, James Lepowsky, Lin Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: Introduction and strongly graded algebras and their generalized modules, In: Bai, Fuchs, Huang, Kong, Runkel, Schweigert (eds.), Conformal Field Theories and Tensor Categories Mathematical Lectures from Peking University. Springer (2014) arXiv:1012.4193, doi:10.1007/978-3-642-39383-9_5
Relation to 2d conformal field theory:
On vertex operator algebras, their associated modular tensor categories and a proof of the Verlinde formula:
On full field algebra for 2d conformal field theory:
On braided fusion categories formed by affine Lie algebra-representations at admissible fractional level:
On vertex operator algebras for orbifold CFTs:
Last revised on March 31, 2023 at 14:13:18. See the history of this page for a list of all contributions to it.